СИНТЕЗ И АНАЛИЗ РОБАСТНОГО УПРАВЛЕНИЯ БИЛИНЕЙНЫМИ ОБЪЕКТАМИ

Бовшук Евгения Руслановна

Специальность 05.13.01 – Системный анализ, управление и обработка информации
Цель и задачи работы

Цель данной работы заключается в разработке нового метода исследования поведения билинейных систем с параметрической неопределенностью находящиеся под воздействием управления, синтезированного с использованием робастной линейной модели первого приближения.

Для достижения указанной цели были решены следующие задачи:

• задача робастной стабилизации билинейной системы;
 • синтез управления на линейной модели;
 • разработка методики построения области начальных условий, траектории, начинающиеся из которой, асимптотически убывают;
• задача терминального робастного управления с заданным показателем точности;
• проведение математического моделирования нелинейной модели системы управления боковым движением летательного аппарата.
Постановка задачи робастного управления

Объект управления:
\[
\frac{d}{dt} x(t) = f(x,u,\alpha(t)), \quad x(t_0) = x_0, \quad x \in \mathbb{R}^n, u \in \mathbb{R}^r, r \leq n, u(t) \in U, t \in [t_0,T].
\] (1)

Начальное состояние \(x(t_0)\) объекта (1) принадлежит ограниченному множеству \(X_0\)

т.е. \(x(t_0) \in X_0\).

Заданы также условия на правом конце:

где \(g(x(T))\) — скалярная функция.

В уравнении (1) \(\alpha(t) \in \Omega\) — параметры объекта, \(\Omega\) — замкнутое ограниченное выпуклое множество.

Задан функционал, оценивающий эффективность управления объектом (1):

\[
J = J(x,u)
\] (4)

\(\alpha(t) = \alpha(t_0,T) \in \Omega\) — возможная траектория изменения параметров объекта (1). Решения дифференциального уравнения (1) принадлежат некоторому дифференциальному включению:

\[
\frac{d}{dt} x(t) \subset f(x,u,\alpha,t), \quad x(t_0) = x_0.
\] (5)

Цель управления: \(\left| g(x^*(T)) \right| \leq d\),

\(d\) — фиксированная неотрицательная величина.
Определение робастного управления

Робастным будем считать управление, которое обеспечивает решение поставленной задачи (1) (6) при начальных условиях из заданного множества $x(t_0) \in X_0$, любых неизвестных значениях параметрических возмущений из определенной параметрической области $\alpha(t) \in \Omega$ и удовлетворяющее наложенным на него ограничениям $u(t) \in U$.
Определение $\alpha^*(t)$

D – область (t, x) – пространства;

D_α – область (t, x, α) – пространства: $D_\alpha : (t, x) \in D$, $\alpha \in \Omega$,

$f \in (C, Lip) \text{ в } D_\alpha$.

Определим одну из возможных траекторий $\alpha^*(t) = \alpha^*(t_0, T) \in \Omega$ изменения параметров объекта (1), если:

• f измерима на множестве D_α при любых фиксированных α и x

• f непрерывна по x при любых фиксированных t и α

• f при фиксированном t непрерывна по совокупности переменных (x, α)

то существует функция $m(t)$, такая, что $|f(x, u, \alpha^*(t))| = m(t)$, то

$$|f(x, u, \alpha(t))| \leq m(t), \quad \alpha(t) \in \Omega, \quad t \in [t_0, T]$$

(7)
Постановка задачи управления

Объект при $\alpha^*(t_0,T) \in \Omega$ принимает вполне определенное описание:

$$\frac{d}{dt} x(t) = f(x,u,\alpha^*(t)), \quad \alpha^*(t) = \alpha^*(t_0,T) \in \Omega. \quad (8)$$

Предположим:

- $f_i(x,u,\alpha^*(t))$ непрерывны относительно $x(t)$ и t

- $\frac{\partial f_i(x,u,\alpha^*(t))}{\partial x_k(t)}$, $\frac{\partial f_i(x,u,\alpha^*(t))}{\partial t}$ непрерывны по $x(t)$ и t

Эти предположения [Немышкий В.В., Степанов В.В.] позволяют представить исходное уравнение объекта в окрестности точки $x = 0$ в виде:

$$\frac{d}{dt} x(t) = [A + \alpha (t)]x(t) + [B + \beta(t) + x(t)K]u(t), \quad x(t_0) = x_0, \quad (9)$$

где вектор-строка K размером $|\alpha|$ содержит действительные коэффициенты.
Робастная стабилизация билинейных систем. Постановка задачи

Объект:

\[
\begin{aligned}
\frac{d}{dt} x(t) &= [A + \alpha(t)]x(t) + [B + \beta(t) + x(t)K]u(t), \quad x \in \mathbb{R}^n, u \in \mathbb{R}^r, u(t) \in U, r \leq n. \\
x(t_0) &= x_0
\end{aligned}
\] (10)

Матрицы \(\alpha(t), \beta(t) \in \Omega \) — содержат параметры, подверженные неконтролируемым возмущениям; \(\Omega \) — замкнутое ограниченное выпуклое множество;

Начальное состояние принадлежит ограниченному множеству, т.е. \(x(t_0) \in X_0 \).

Функционал качества:

\[
J(x, u) = \frac{1}{2} x^T(T)Fx(T) + \frac{1}{2} \int_{t_0}^{T} \left\{ x^T(t)Qx(t) + u^T(t)Ru(t) \right\} dt,
\] (11)

Задача управления объектом (10) заключается в построении такой стратегии \(u(t) \in U \), при которой минимизируется функционал (11).
Синтез управления на линейной модели

Робастная модель объекта (10):

\[
\frac{d}{dt} z(t) = \left[A + \alpha^* \right] z(t) + \left[B + \beta^* + z(t)K \right] u(t), \quad z(t_0) = x_0
\] (12)

Матрицы \(\alpha^*, \beta^* \in \partial \Omega \) таковы, что:

\[
\left\| \left[A + \alpha^* \right] z(t) + \left[B + \beta^* + z(t)K \right] u(t) \right\| \geq \left\| \left[A + \alpha(t) \right] x(t) + \left[B + \beta(t) + x(t)K \right] u(t) \right\|
\] (13)

Тогда решение уравнения (12) является мажорирующим (в смысле (13)) для различных решений уравнения (10).

Будем искать управление \(u(t) \in U \) как функцию состояния объекта (10): \(u(t) = Hx(t) \), где матрица \(H \) содержит постоянные параметры.

Поиск матрицы \(H \) осуществляется с использованием линейной модели,

которая имеет вид:

\[
\frac{d}{dt} z_M(t) = \left[A + \alpha^* \right] z_M(t) + \left[B + \beta^* \right] u^*(t), \quad z_M(t_0) = x_0.
\] (14)
Синтез управления на линейной модели

Для того, чтобы регулятор в терминальной задаче содержал постоянные параметры, назначим матрицу штрафа первого слагаемого функционала (11) в виде \(F = S \), где положительно определенная матрица \(S \) является решением уравнения Риккати — Лурье:

\[
S \left[A + \alpha^* \right] + \left[A + \alpha^* \right]^T S - S \left[B + \beta^* \right] R^{-1} \left[B + \beta^* \right]^T S + Q = 0.
\]

Оптимальное управление для модели (14) с функционалом качества (11), в котором вместо \(z(t) \) подставим \(z_M(t) \), будет иметь вид:

\[
u^*(t) = - R^{-1} \left[B + \beta^* \right]^T S z_M(t).
\] (15)

Используем структуру управления (15) для построения управлением объектом (10) и его робастной модели (12).

Уравнение объекта с соответствующим управлением:

\[
\frac{d}{dt} x(t) = \left\{ A + \alpha(t) - \left[B + \beta(t) + x(t) K \right] R^{-1} \left[B + \beta^* \right]^T S \right\} x(t), \quad x(t_0) = x_0
\] (16)

Робастная модель с соответствующим управлением:

\[
\frac{d}{dt} z(t) = \left\{ A + \alpha^* - \left[B + \beta^* + z(t) K \right] R^{-1} \left[B + \beta^* \right]^T S \right\} z(t), \quad z(t_0) = x_0
\] (17)
Условия асимптотической устойчивости

Решение уравнения (17) имеет вид:

\[z(t) = \left[\exp(\mathcal{H} t) \right] \left\{ z(0) - \int_0^t \left[\exp(-\mathcal{H} \tau) \right] z(\tau) K R^{-1} \left[B + \beta^* \right]^T S z(\tau) d\tau \right\} \quad (18) \]

где \(\mathcal{H} = A + \alpha^* - \begin{bmatrix} B + \beta^* \end{bmatrix} R^{-1} \left[B + \beta^* \right]^T S \). Обозначим \(N = K R^{-1} \left[B + \beta^* \right]^T S \).

Если синтезированное управление стабилизирует исходный объект, то:

\[\| z(0) \| - \left\| \int_0^t \left[\exp(-\mathcal{H} \tau) \right] z(\tau) N z(\tau) d\tau \right\| \to 0 \quad \text{при} \quad t \to \infty \]

Так как первое слагаемое имеет конечное значение, то и второе слагаемое при управлении стабилизирующим объект, должно иметь конечное значение при \(t \to \infty \).

Учитывая, что:

\[\left\| \int_0^t \left[\exp(-\mathcal{H} \tau) \right] z(\tau) N z(\tau) d\tau \right\| \leq \int_0^t \left\| \left[\exp(-\mathcal{H} \tau) \right] z(\tau) N z(\tau) d\tau \right\| \]

последнее выполняется в том случае, если подынтегральное выражение в правой части неравенства (19) будет убывать. Потребуем, чтобы положительно определенное подынтегральное выражение убывало монотонно.
Сверхустойчивость [Поляк, Щербаков]

Определение.

Назовем систему \(\frac{d}{dt} z(t) = [\mathcal{H} + z(t)N] z(t) \), \(z \in \mathbb{R}^n \), у которой корни \(\lambda_i, i = 1,2,\ldots,n \) характеристического уравнения имеют отрицательные действительные части сверхустойчивой, если:

\[
\int_0^1 \left\| \{ \exp \mathcal{H}(t - \tau) \} z(\tau)N z(\tau) \right\| d\tau \leq L e^{-\rho t} \int_0^1 e^{\rho \tau} \left\| z(\tau)N z(\tau) \right\| d\tau
\]

(20)

где постоянные \(L \) и \(\rho \) такие, что:

\[
\left\| \exp \mathcal{H} t \right\| \leq L e^{-\rho t}, \ t \geq 0
\]

(21)

\(L > 0 \) и \((-\rho) = \max (\text{Re} \lambda_i) < 0 \)
Условия монотонной асимптотической сходимости

Подынтегральное выражение:

\[
\int_0^t \left[\exp(-J_t \tau) \right] z(\tau) N z(\tau) d\tau \leq \int_0^t \left[\exp(-J_t \tau) \right] z(\tau) N z(\tau) d\tau
\]

будет убывать монотонно, если:

\[
\| J t \left\{ \exp \left[-J t \right] z(t) N z(t) \right\} > \left\| \exp \left[-J t \right] \left\{ \frac{d}{dt} \left(z(t) N z(t) \right) \right\} \right\|, \quad z \neq 0
\]

В начальный момент при \(t_0 = 0 \):

\[
\left\| \frac{d}{dt} \left(z(t) N z(t) \right) \right\| < \left\| J t z(t) N z(t) \right\|, \quad t \geq 0
\]

или

\[
\left\| \frac{d}{dt} \left(z(t) N z(t) \right) \right\| < \left\| J t \right\|, \quad z(t) \neq 0 \quad \text{нpu} \ t = 0
\]

(23)
Необходимые условия существования стабилизирующего управления

Теорема 1.

Пусть задан билинейный неопределенный объект вида:

\[
\frac{d}{dt} x(t) = [A + \alpha(t)]x(t) + [B + \beta(t) + x(t)K]u(t),
\]

где \(\alpha(t), \beta(t) \in \Omega, \ \Omega \) – замкнутое ограниченное множество возможных траекторий изменений параметров объекта, и пусть \(\alpha^*, \beta^* \in \partial \Omega \) такие, что:

\[
\left\| [A + \alpha^*]x(t) + [B + \beta^* + x(t)K]u(t) \right\| \geq \left\| [A + \alpha(t)]x(t) + [B + \beta(t) + x(t)K]u(t) \right\|
\]

Тогда необходимым условием существования управления вида:

\[
u(t) = -R^{-1}[B + \beta^*]S \ x(t), \ \text{где} \ S[A + \alpha^*] + [A + \alpha^*]^T S - S[B + \beta^*]R^{-1}[B + \beta^*]^T S + Q = 0,
\]

при котором \(x(t) \to 0 \) при \(t \to \infty \), является условие:

\[
\left\| \frac{d}{dt}(x(t)Nx(t)) \right\| < \left\| \Pi x(t)Nx(t) \right\|, \ \ x(t) \neq 0, \ t = 0 \ \text{где} \ \Pi = A + \alpha^* - [B + \beta^*]R^{-1}[B + \beta^*]^T S,
\]

\[
N = KR^{-1}[B + \beta^*]^T S.
\]
Необходимые условия существования стабилизирующего управления

Теорема 2.

Система:

\[
\frac{d}{dt} z(t) = [\mathcal{H} + z(t)N]z(t), \quad z \in \mathbb{R}^n
\]

асимптотически устойчива, если:

а) решение уравнения \(\frac{d}{dt} z_M(t) = \mathcal{H} z_M(t), \quad z_M(t_0) = x_0 \) стремиться к нулю при \(t \to \infty \);

б) начальные условия системы таковы, что

\[
\left[\frac{d}{dt} \left[z(t)N z(t) \right]^T \right] z(t)N z(t) + \left[z(t)N z(t) \right]^T \left[\frac{d}{dt} z(t)N z(t) \right] -
\]

\[
- \left[z(t)N z(t) \right]^T \mathcal{H} z(t)N z(t) \leq 0, \quad t = 0, \quad z(0) \neq 0.
\]
Пример найденных начальных условий стабилизируемой билинейной системы

Билинейная система «объект-регулятор» имеет вид:

\[
\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u + \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} u
\]

Матричное нелинейное неравенство, определяющее область допустимых начальных условий:

\[
\begin{pmatrix} 0 & \begin{pmatrix} 0 & -4x_2(0) - x_1(0))[-2x_1(0) - 3x_2(0) - x_1(0)x_2(0) - 2x_2^2(0)] - x_2^2 \\ -2x_2^2(0) - x_1(0)x_2(0) \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ -2x_2^2(0) - x_1(0)x_2(0) \end{pmatrix} \leq 0, x_1(0) \neq 0, x_2(0) \neq 0
\]

или

\[
\begin{pmatrix} -2x_2^2(0) - x_1(0)x_2(0) \end{pmatrix}^2 \geq 0
\]

\[
(-2x_2^2(0) - x_1(0)x_2(0))[8x_2^3(0) + 8x_1(0)x_2(0) + 5x_2^2(0) + 6x_1(0)x_2^2(0) + 2x_1^2(0) + x_1^2(0)x_2(0)] \leq 0
\]
Область начальных условий
Задача терминального робастного управления.
Постановка задачи

Робастная модель объекта (10) описывается уравнением:

\[
\frac{d}{dt} z(t) = \left[A + \alpha^* - \left[B + \beta^* + z(t)K \right] R^{-1} \left[B + \beta^* \right]^T S \right] z(t), \quad z(t_0) = x_0 \in X_0
\]
(18)

Пусть \(t_0 = 0 \) и \(T - \) заданный момент окончания переходного процесса, где
\([t_0, T]-\) интервал управления. Задана цель управления: \(\|z(T)\| \leq d \),
(19)

где \(d \) – фиксированная неотрицательная величина.

Оптимальное управление для модели (18) имеет вид:

\[
u^*(t) = -R^{-1} \left[B + \beta^* \right]^T S z(t), \text{ где постоянная положительно определенная матрица } S
\]

определяется решением уравнения Риккати - Лурье:

\[
S \left[A + \alpha^* \right] + \left[A + \alpha^* \right]^T S - S \left[B + \beta^* \right] R^{-1} \left[B + \beta^* \right]^T S + Q = 0.
\]

Уравнение билинейной робастной модели с соответствующим управлением будет иметь вид:

\[
\frac{d}{dt} z(t) = \left\{ A + \alpha^* - \left[B + \beta^* + z(t)K \right] R^{-1} \left[B + \beta^* \right]^T S \right\} z(t), \quad z(t_0) = x_0
\]

17
Определение терминального робастного управления

Терминальным робастным управлением будем называть управление, которое обеспечивает решение поставленной задачи (18) (19) при заданном времени окончания переходного процесса \(T > 0 \).
Условия существования терминального d – робастного управления

Условие d – робастности для модели объекта:

$$
\frac{d}{dt} z(t) = \left[A + \alpha^* - (B + \beta^* + z(t)K) R^{-1} [B + \beta^*]^T S \right] z(t), \quad z(t_0) = x_0 \in X_0
$$

имеет вид:

$$
\| z(T) \| = \left\| \exp \left(\Pi T \right) z(0) - \int_0^T \left[\exp \left(-\Pi \tau \right) \right] z(\tau) Nz(\tau) d\tau \right\| \leq d
$$

Откуда:

$$
\left\| \left[\exp \left(\Pi T \right) \right] z(0) \right\| - d \leq \int_0^T \left\| \left[\exp \left(-\Pi \tau \right) \right] z(\tau) Nz(\tau) d\tau \right\|
$$

(20)
Условия существования терминального \(d \) — робастного управления

Теорема 3.

В задаче управления билинейным нестационарным объектом вида:

\[
\frac{d}{dt} z(t) = \begin{bmatrix} A + \alpha^* \\ B + \beta^* \end{bmatrix} z(t) + \begin{bmatrix} B + \beta^* + z(t) K \end{bmatrix} u(t)
\]

где \(u(t) = -R^{-1} \begin{bmatrix} B + \beta^* \end{bmatrix} S z(t) \) и матрица \(S \) является решением уравнения Риккати-Лурье:

\[
S \begin{bmatrix} A + \alpha^* \\ A + \alpha^* \end{bmatrix} + \begin{bmatrix} A + \alpha^* \end{bmatrix}^T S - S \begin{bmatrix} B + \beta^* \\ B + \beta^* \end{bmatrix} R^{-1} \begin{bmatrix} B + \beta^* \end{bmatrix}^T S + Q = 0,
\]

с заданным интервалом управления, заданным интервалом параметрической неопределенности \(\alpha^*, \beta^* \in \partial \Omega \) и заданной областью возможных начальных состояний \(Z_0 \) условия:

\[
\left\| \frac{d}{dt} \left(z(t) N z(t) \right) \right\| < \left\| \mathcal{P} z(t) N z(t) \right\|, \quad z(t) \neq 0, \quad t = 0, \quad \text{где} \quad \mathcal{P} = A + \alpha^* - \begin{bmatrix} B + \beta^* \end{bmatrix} R^{-1} \begin{bmatrix} B + \beta^* \end{bmatrix}^T S,
\]

и

\[
\left\| \exp \left(\mathcal{P} T \right) z(0) \right\| - d \leq \int_0^T \left\| \exp \left(-\mathcal{P} \tau \right) \right\| z(\tau) N z(\tau) d\tau
\]

являются соответственно необходимыми и достаточными условиями существования \(d \) — робастного управления.
Управление боковым движением самолета. Постановка задачи

Боковое движение самолета:
\[
\frac{d}{dt} x(t) = Ax(t) + Bu(t) + \varphi(x,t)
\]
\[
x^T(t) = (\beta, \omega_x, \omega_y, \gamma), \varphi^T(x,t) = (\beta^2, 0, 0, 0)
\]
где \(\beta\) – угол скольжения, \(\gamma\) – угол крена, \(\omega_x, \omega_y\) – угловые скорости, \(\delta_e, \delta_n\) – углы отклонения элеронов и руля соответственно.

Минимизируемый функционал качества задается выражением:
\[
J = \lim_{(T-t_0) \to \infty} \frac{1}{2} \int_{t_0}^{T} \left[\left(\frac{\delta_e}{\delta_{e_0}} \right)^2 + \left(\frac{\delta_n}{\delta_{n_0}} \right)^2 + \left(\frac{\gamma}{\gamma_0} \right)^2 + \left(\frac{\beta}{\beta_0} \right)^2 \right] dt
\]
Функционал \(J\) представлен в форме
\[
J = \int_{t_0}^{T} (x^TQx + u^TRu)dt, \quad \text{где}
\]
\[
Q = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad R = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}, \quad \delta_{e_0} = \delta_{n_0} = \gamma_0 = \beta_0 = 1, \quad u = (\delta_n, \delta_e)
\]
Управление боковым движением самолета.
Постановка задачи

Начальные условия: $x^T(0) = (0, 0, 0, 0.21)$

1. Режим на «малом» угле атаки:

$$
A = \begin{pmatrix}
-0.172 & 0.0631 & 0.948 & 0.051 \\
-26.05 & -2.749 & -0.533 & 0 \\
-4.337 & -0.006 & -0.301 & 0 \\
0 & 1 & 0.0632 & 0
\end{pmatrix},
B = \begin{pmatrix}
-0.034 & 0 \\
-4.757 & -18.664 \\
-3.07 & 0.666 \\
0 & 0
\end{pmatrix}.
$$

2. Режим на «большом» угле атаки:

$$
A = \begin{pmatrix}
-0.152 & 0.4226 & 0.9063 & 0.096 \\
-18.643 & -1.06 & -1.6 & 0 \\
-1.757 & -0.153 & -0.136 & 0 \\
0 & 1 & 0.4663 & 0
\end{pmatrix},
B = \begin{pmatrix}
-0.032 & 0 \\
-1.874 & -8.966 \\
-1.146 & 0.304 \\
0 & 0
\end{pmatrix}.
$$
Управление боковым движением самолета.
Постановка задачи

Закон управления объектом имеет вид:

\[
\begin{pmatrix}
\delta_n \\
\delta_e
\end{pmatrix} = -K \begin{pmatrix}
\beta \\
\omega_x \\
\omega_y \\
\gamma
\end{pmatrix}, \text{ где } K = -R^{-1} B^T S.
\]

1. Режим на «малом» угле атаки:

\[
K = \begin{pmatrix}
-0,45 & -0,0152 & -0,4808 & -0,1199 \\
1,1479 & -0,198 & 0,306 & -0,9810
\end{pmatrix}, S = \begin{pmatrix}
1,1568 & -0,0538 & 0,2171 & -0,2272 \\
-0,0538 & 0,0102 & -0,0103 & 0,0512 \\
0,2171 & -0,0103 & 0,1702 & -0,0378 \\
-0,2272 & 0,0512 & -0,0378 & 0,3538
\end{pmatrix}
\]

2. Режим на «большом» угле атаки:

\[
K = \begin{pmatrix}
-0,6547 & -0,0159 & -0,901 & -0,1537 \\
0,9938 & -0,2683 & 0,774 & -0,9283
\end{pmatrix}, S = \begin{pmatrix}
1,7425 & -0,0882 & 0,6669 & -0,5969 \\
-0,0882 & 0,0280 & -0,0571 & 0,0943 \\
0,6669 & -0,0571 & 0,8610 & -0,2717 \\
-0,5969 & 0,0943 & -0,2717 & 0,5706
\end{pmatrix}
\]
Графики переходных процессов объекта (режим на «малом» угле атаки)
Графики переходных процессов объекта (режим на «большом» угле атаки)
Научная новизна диссертации

• Разработан новый метод исследования поведения неопределенных билинейных систем с параметрической неопределенностью находящиеся под воздействием управления, синтезированного с использованием робастной линейной модели первого приближения.

• Найдены необходимые условия существования стабилизирующего управления.

• Получены условия существования терминального робастного управления.
Практическая ценность работы

- методика построения области начальных условий, траектории, начинающиеся из которой, асимптотически убывают;

- результаты математического моделирования нелинейной модели системы управления боковым движением летательного аппарата.
Основные результаты диссертационной работы

• разработан новый метод исследования поведения неопределенных билинейных систем с параметрической неопределенностью, находящиеся под воздействием управления, синтезированного с использованием робастной линейной модели первого приближения;

• найдены необходимые условия существования стабилизирующего управления;

• разработана методика построения области начальных условий, траектории, начинающиеся из которой, асимптотически убывают;

• получены необходимые и достаточные условия существования терминального робастного управления;

• проведено математическое моделирование нелинейной модели системы управления боковым движением летательного аппарата.